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HAMILTONIAN FORMULATI,ON AND FUNDAMENTAL CONSERVATION LAWS 
FOR A MODEL OF SMALL ELLIPTICAL VORTICES* 

M.A. BRIJTYAN and P.L. KRAPIVSKII 

A Hamiltonian formulation and fundamental conservation laws are considered for a model 

of small elliptical vortices /l/ which, while maintaining the attractive aspectsofKirchhoff's 

point-vortex model, makes approximate allowance for the internal dynamics of vortices. AS 

an example, the motion of two vortices in the direction of the normal to a straight line 
through their centres is considered. 

When coherent structures in the two-dimensional flow of an ideal incompressible fluidare 

modelled by Kirchhoff point vortices, neither the internal structure of the vortices nor the 

changes in their shapes are taken into consideration. For example, the "vortex pairing" 

phenomenon observed in shear flows /2/ cannot be described in the context of the point-vortex 

model. Several authors /3, 4/ have represented vortices as finite regions of constant vor- 

ticity. The shape of the vortices is not known in advance but determined by a numerical sol- 

ution of Euler's equations by the contour dynamical method /3/. As the method is cumbersome, 

it is useful only when the number of vortices is small. 

The internal dynamics of vortices may be taken into account by considering elliptically 

shaped vortices, within which the vorticity is assumed to be constant /l/. This constant 

vorticity condition is not obligatory. One can also consider other vorticity distributions, 

such as hollow vortices, in which the vorticity is concentrated on the boundary. However, the 

constant vorticity model is physically reasonable in view of the Prandtl-Batchelor Theorem/5/, 

if one is interested in applications to the modelling of flows at large Reynolds numbers. The 

assumption that the vortices are elliptical is also natural for the following reasons. First, 

as Kirchhoff showed /S/,an isolated elliptical vortex rotates at constant angular velocity 

without changing shape. Second, the same vortex in an external flow with stream function 

$ = constzy 
(I) 

remains elliptical in motion, though the ratio of its axes may vary /6/. 

In a system of small elliptical vortices, in which the characteristic distance between 

vortices may exceed their characteristic dimension, the internal dynamics of such vortex 

splits into a Kirchhoff rotation and a motion driven by the external field due to the other 

vortices. The latter has the form (1) in the principal term, so that such vortices remain 

elliptical. 

Consider a system of N elliptical vortices in an infinite ideal incompressible fluid. 

Let Ok be the vorticity of the a-th vortex, Q, b, its semi-axes, A,= no,b, its area, I', = 

A,% the circulation, h, = a&,. t,= A,, i ($J-'3 'p. the angle between the axis of the ellipse 

and the. z axis, za= (I~. Y,) the position of thevortex centre. The relative position of a 
pair of vortices is described by polar coordinates RaB, f&0, so that zcr-zR= Ra8(~098w, sinfl,&, 

In the case considered here - a piecewise-constant distribution of vorticity - the energy 

of the motion may be expressed as 

(2) 

where the integrationisperformed over the a-th and b-th ellipses. 

We first consider JeLB for a# B. Writing 1 = r,+ 2'. t=r,+:, and noting that,byvirtue 

of our initial assumptions, I I’ II I 6’ IQ R,@. we expand InI I - 61 up to second-order terms: 

InIr-Ll==InR,p+ 
(2’ - 1’) (la - ‘6) 

%e + 1 ( I’ - t’ 1’ 

-Tq-- 
I@ - 6’) Pa - ‘e)]’ 

%6 r ,+ 

After integration, the first term will give the usual Kirchhoff Hamiltonian, while the con- 
tribution of the second vanishes owing to symmetry. Integration of the third term again 
utilizes symmetry considerations, and the following integrals are evaluated: 
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Unlike J=@, I, must be evaluated exactly. Cumbersome calculations yield 

The final formula for the Hamiltonian is 

The equations for the trajectories of the fluid particles are found from the usual 
formulae 

et' = 6Hl6u, oy' = --bEi (4) 

where 6/&, 616~ are variational derivatives. Using the explicit formula fortheHamiltonian 
(3), one can reduce the infinite-dimensional Hamiltonian system (4) to the finite-dimensional 
system 

T=z=' = aanau=, r,y; = -aHiar, 45) 
(8n)-~r,A,t; =aHiav,, (et)-1 r,hv; = - aH/ai, 

Thus, the system of small elliptical vortices is described by the Hamiltonian Eqs.(5) 
with 2N degrees of freedom, relative to which (z=, ud and u, cpd are conjugate canonical 
variables. The first two equations of (5) are an immediate generalizationof Kirchhoff's Eqs. 
/5/ and describe the external dynamics of the vortices, while the other equations describe 
the internal dynamics. Invariance under translations and rotations of the coordinate frame 
yields the integrals of motion 

J, = z rozo. I,= I ray, 

J, = m, 12,’ + vm’ + (4W'Ad=1 

(‘5) 

It was assumed previously that the characteristic dimension of the vortex isoftheorder 
of fi. However, situations may occur in which the vortices are strongly stretched, so that 
the characteristic dimension should be the major semi-axis. For example, it has been shown 
/6/ that a single elliptical vortex in a shear flow may stretch to infinity. It is there- 
fore interesting to considerthelimiting model of small elliptical vortices - a model of 
vertical segments, in which o= is assumed to be finite, b, - 0, o, - 00, sothatthecirculation 
r a. s=,b=='= remains finite. The condition that the vortices be small is now =xR. 

In this limiting case, one must put b,= b, = 0. Ku=)= In== in formula (3) for the 
Hamiltonian, and the last two equations for motion (5) are replaced by 

(r,b3) (o,*)’ = aHI@,, (r,k3) va’ = -aHlao=* 

It is clear that the conjugate canonical variables are (r=,y=) and (a=*,~=). Of the 
integrals of motion (61, only the last one must be changed, replacing the quantity (4W'-4=1= 
by wdJ4. 

Examples of the motion of small elliptical vortices. Consider the motionoftwo vortices. 
This is a Hamiltonian system with four degrees of freedom, and by Liouville's Theorem /i'/, a 
necessary condition for its integrability is the existence of three additional integrals of 
motion, which are in involution with respect to Poisson brackets. It is easy to show that 
the Poisson brackets associated with the Hamiltonian Eqs.(51, for two arbitrary functions F, 
G, are given by 

The three additional integrals of (6) are not in involution: 

(I,. /,I = zr=, {J,. J,) - u,, (I,, r,} - ---2/r 

Two integrals of motion which are in involution can be constructed, e.g., I, and J,'+J,*. 
We cannot prove that there is no third independent integral of motion of involution with 



them. In an analogous, simpler situation, with Kirchhoff vortices, numerical results /8, '31 
indicate that in general even a system of two small elliptical vortices is stochastic. llowever, 

if the system admits of additional discrete symmetry, it may turn out to be integrable. 
As an example, consider the motion of a pair of vortices symmetrical about the I axis: 

a vortex with circulation F and coordinates (t,y./,(~) and another with circulation I' and co- 
ordinates (I,--Y./,-V). The first and third conservation laws (6) are identically valid, while 

the second yields y -= y0 = const. The energy conservation law yields yet another integral of 
motion 

1 - A’ 
e~cOs2~+In(/+2)= const e= (L-” ) 

&ff ---==o~t 

The last two equations of motion (5) yield 

b’--2edsin2fq, 
A0 

9.=~++z&cos2, 

Note that the conservation law (7) can be derived directly from Eq.(E). 

The .longitudinal coordinate of the vortices is found from the first two of Eqs.(S): 

(8) 

Eqs.(E) and (9) are readily integrated numerically. However, as the results presented 

above hold for 841. we will use perturbation theory, seeking a solution in the form 

Substituting 

finally obtain 

‘P=%+eecp,+O(e*), h=A,+eb,+O(e~) 
0 = ql + et, + 0 (LI) 

this expansion into (E), (9) and assuming for simplicity that ;lo# 1, we 

~=of+toj&~-~~)+O (&f) ('0) 

l=&.ot_& 
cos201-1 
'-pi- 0 (a') 

1-V sin201 
'SET.7 +O(e*); O=& 1 

Here B is the angular velocity of rotation of a single vortex; the initial conditions 

are i(O) = &. I (0) = 0. 'p (0) = 0. It is obvious that the secondary motion of the order of e is 

periodic and its frequency is double that of the fundamental motion. Terms of the order of 

e’ 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 

9. 

are disregarded, since they were not taken into account in the fundamental equations (5). 

A detailed investigation of the motion of two small vortices was undertaken in /lo, ll/. 
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